415. Infrared Absorption of Substituents in Aromatic Systems. Part I. Methoxy- and Ethoxy-compounds.

By A. R. KATRITZKY and N. A. COATS.

The absorption bands caused by the methoxyl group in twenty-three compounds, and the ethoxyl group in fifteen compounds, are recorded and discussed.

KATRITZKY and his co-workers 1-3 have shown that a heteroaromatic or benzenoid ring substituted in the same position(s) possesses characteristic bands, the frequencies and intensities of which are either reasonably constant or vary in a regular manner with the electronic nature of the substituent. The remaining bands of $\varepsilon_A \ge 15$ are (with few exceptions) characteristic of the substituent and are also reasonably constant or show variations of intensity and/or position which can be correlated with the nature of the ring.

Details of these bands have been published for some carbonyl compounds;¹ this series will deal with other substituents. In this paper the absorption caused by methoxyl and ethoxyl groups is reported. For conditions of measurement, the justification for recording apparent extinction coefficients, and the errors and approximations involved therein, see ref. 1. The results are given in Tables 1 and 2.

Although dimethyl ether has been studied in detail,⁴ relatively little has been reported for aromatic ethers.⁵⁻⁹ In the most extensive investigation before the present work, Briggs et al.9 measured eleven methoxy- and three ethoxy-compounds (as mulls, films, or in potassium bromide or carbon tetrachloride) and proposed several characteristic bands for each group. The results of the previous workers are compared below with our conclusions.

The 3000 cm.⁻¹ Region.—The symmetric methyl CH stretching frequency of methyl ethers was previously ⁸ reported at 2832-2815 cm.⁻¹ (calcium fluoride prism), and even with the poor resolution of the sodium chloride prism a band or shoulder is shown for the benzenoid methoxy-compounds at $ca. 2850 \text{ cm}^{-1}$; for the heterocyclic derivatives, this region is usually obscured by the CH stretching of the hydrogen-bonded solvent 2^{a} (Table 1, col. 1).

The 1500-1350 cm.⁻¹ Region.-Bands are found at 1468-1458 cm.⁻¹ (50-80) $[1463 \pm 3 \text{ cm}^{-1} (60 \pm 10)]$ * and 1445—1432 cm $^{-1} [1440 \pm 4 \text{ cm}^{-1}]$ for the methoxycompounds (Table 1, cols. 2 and 3). The intensity of the latter band is (30-60) [(40+10)]

* Apparent extinction coefficients are enclosed in parentheses and standard deviations in brackets (cf. ref. 1). The intensities of shoulders and superimposed bands and the positions of shoulders are not treated statistically.

¹ Cf. Katritzky, Monro, Beard, Dearnaley, and Earl, J., 1958, 2182.

² (a) Katritzky and Gardner, J., 1958, 2198; Katritzky and Hands, *ibid.*, pp. 2195, 2202; Katritzky, Hands, and Jones, *ibid.*, p. 3165; Katritzky and Gardner, *ibid.*, p. 2192; Katritzky, J., 1959, 2049; Katritzky, Beard, and Coats, unpublished work. (b) Katritzky and Lagowski, J., 1958, 4155.

³ Katritzky, J., 1958, 4162.
 ⁴ Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand, Princeton,

1945, p. 353.
⁵ Lecomte in "Traité de Chimie Organique," edited by Grignard, Masson et Cie, Paris, 1936, Vol. II, p. 238; Jones and Sandorfy in Weissburger, "Technique of Organic Chemistry," Interscience Publ. It, J. 208, Joints and Sandorly in Verssburger, Technique of Organic Cherry, Ltd., London, 1956, Vol. IX, p. 435.
Colthup, J. Opt. Soc. America, 1950, 40, 397.
Tschamler and Leutner, Monatsh., 1952, 83, 1502.
Henbest, Meakins, Nicholls, and Wagland, J., 1957, 1462.
Briggs, Colebrook, Fales, and Wildman, Analyt. Chem., 1957, 29, 904.

for the benzenoid compounds (Nos. 1-16) but appreciably higher (70-110) for the heterocyclic compounds. Absorption occurs at 1480–1471 cm.⁻¹ (35–115) [1476 \pm 3 cm.⁻¹ (80 + 20)], 1448—1442 cm.⁻¹ (20—35) [1444 ± 2 cm.⁻¹ (25 ± 5)], and 1398—1385 cm.⁻¹ (35-110) [1392 \pm 3 cm.⁻¹ (60 \pm 20)] for the ethoxy-compounds (Table 2, cols. 1, 2, and 3). These bands have been assigned (see Tables) by comparison with the corresponding esters.

TABLE 1.Methoxy-compounds.

		1		2		3		4		5		6		
		CH3		CI	H ₃ be	nding						COC s	ym.	
		νCH		asym.		sym.		COC asym. stre			ch	stret	stretch	
No.	Ring	cm1	ε	cm1	ε	cm1	ε _Α	cm1	ε	cm1	ε	cm1	εΑ	
1	Ph	2835	20	1466	50	1441 *	40 {	1301 1290 *	$55 \\ 45$	1244	250	1039	130	
2	C ₆ H ₄ ·NH ₂ -m	2850 *	15	1460	70	1440	40	1300 *	55	1288	100	1038	120	
3	$C_{a}H_{a}$ ·OMe-m	2830	4 5	1459 †	135	1437	100	()	{	1282	150	1048	160	
4	C.H. OH-m	2860	15	1464 †	85	1442	60	1329	65	1286	135	1032	105	
5	C_6H_4 ·Me-m	2850	20	1467 †	75	1436	35	1290	90	1260	150	1054	70 80	
6	C ₆ H ₄ ·CH:CH·CO ₉ Me-m	2840	20	1460 †	90	1438 †	145	1273 *	215	1260 *	235	1041	135	
7	$C_{6}H_{4}\cdot CH:CH\cdot CO_{2}Et-m$	2850 *	20	1465 †	110	1 43 2 ‡	80	(—)		1257 *	250	1040 †	180	
8	CeH. NOm	2840 *	15	1458	55	1440 *	40	1283	155	1246	240	1040 *	100	
							(1327	15	(1236	230)	1035	115	
9	C ₆ H ₄ •NH ₂ -p	2850	15	1468	50	1443	3 5 {	1293	30	(1200	-00)	1000		
10	C ₆ H₄•OMe- <i>p</i>	2850	<i>40</i>	1464	100	1442	80	1291	35	(1225)	270)	1042	220	
11	$C_{6}H_{4} OH-p$	2840	25	1467	80	1 43 6 †	90	1294	45	(CHC	(l ₃)	1034	170	
12	$C_{6}H_{4}$ ·Me- p	2840 *	25	1465	55	1442 *	40	1293	75	1242	210	1033	105	
13	$C_6H_4(CH:CH\cdot 4P)-p$	2850 *	20	1465	55	1445	30{	1325 * 1280	15 1 3 0	1252	290	1034	125	
14	C ₆ H ₄ (CH:CH·4PO)-p	2855 *	25	1465 *	120	1450 *	75	1330 * 1275 *	$\begin{array}{c} 20 \\ 145 \end{array}$	1247 †	450	1028 †	230	
15	$C_{6}H_{4}(C:C\cdot 4P)-p$	2850 *	30	1463	50	1442	35	1315 * 1286	$\begin{array}{c} 25 \\ 145 \end{array}$	1247	310	1029	130	
16	C ₆ H₄•NO₂-⊅	2850	25	1459	80	1442	50	1295	105	1262	490	1028	190	
17	4P	()		1466	75	1445	90	—		1288	260	1033	205	
18	2P	(—)		1470 *	45	1445	110	1312	145	$\{ 1292 \\ 1248 \}$	260 { 105 {	1045 † 1020	$\frac{110}{115}$	
19	4PO	(—)		1464	60	1440 †	135			1292	210	1027 +	290	
20	4PO(3Me)	()		1460 *	105	1442*	115	1300	50	1283	310	1028	280	
21	310	()		1460	70	1438 †	160			1308	165	1043	115	
22	2PO	()		1459 *	70	1440 *	85		ł	1273	$\frac{290}{170}$	1023	175	
23	4PBCl ₃			1466 †	75	1440	70	1331 *	55	1313	220	1013	100	

* Shoulder. † Absorption considered to be the superimposition of two peaks. — Absence of absorption. (—) Band masked by stronger absorption. (CHCl₃) Band masked by solvent. ‡ Band the intensity of which is markedly raised by overlap.

Ph phenyl, P substituted pyridine, PO substituted pyridine 1-oxide, PO(3Me) substituted 3-methylpyridine 1-oxide; the position of the substituent is indicated by a numeral.

 $\epsilon_{\rm A}$ values in italics indicate absorption by two alkoxyl groups in similar environments. Unexplained bands ($\epsilon_{\rm A} \ge 15$) were shown for compound No. 19 at 2470 (25) and 1567 (25) cm.⁻¹; for No. 17 at 1633 (30) and 837 (55) cm.⁻¹; for No. 21 at 1080 (15) cm.⁻¹; and for No. 22 at 3300 (25) cm.-1.

Methyl esters under the same conditions of measurement¹ show only the CH₃ symmetrical deformation at $[1439 \pm 3 \text{ cm.}^{-1} (110 \pm 15)]$; however, a weak shoulder on this band is shown ¹⁰ for methyl acetate at 1456 cm.⁻¹ due to the asymmetrical vibration. The changed environment of the methoxyl group in the ethers thus weakens the intensity of the symmetrical deformation and strengthens that of the asymmetrical deformation; the intensity of the symmetrical CH_a bending frequency for the methyl ethers is highest for the heterocyclic compounds in which the heterocyclic rings have some of the electronaccepting ability of the carbonyl group.

Ethyl esters show CH₂ scissor $[1465 \pm 3 \text{ cm.}^{-1} (35 \pm 10)]$ and wagging modes ¹⁰ Nolin and Jones, Canad. J. Chem., 1956, 34, 1382.

TABLE 2. Ethoxy-compounds.

		1		2 3				4		5		
		СН		CH ₂ bending					COC asym			
		scisso	r	asym.		syı	n.		stretc	h.		
No.	Ring	cm1	ε	cm1	ε	cm1	εA	cm1	εA	cm1	εA	
1	Ph	1478	95	14 45	25	1389	35 {	1300 1289	45 45	1239	220	
2	C ₆ H₄∙NH₂- <i>m</i>	1476	75	1444 *	25	1390	40	()	10	1282	70	
3	C_8H_4 ·OEt-m	1472	130	1447	70	1390	105	1330	50 {	$\frac{1282}{1260}$	120 120	
4	C_6H_4 ·Me-m	1476	60	1443	35	1390	85	1286	70	1253	120	
5	C_6H_4 ·NO ₂ -m	1471	100	1442	35	1395	80	1282	140	1242	140	
6	C_6H_4 ·NH ₂ - p	1480	85	1443	20	1393	45 {	1324 1292	15 (35	1230	200)	
7	C ₆ H₄•Me-⊅	1480	35	1442	20	1390	45	1287	40	(CH	(Cl ₃)	
8	$C_6H_4 \cdot NO_2 \cdot p$	1476	75	1444	25	1395	55	1298	155	1259	390	
9	4 P	1475	80	1445	20	1395	40	1360 *	25 {	1285	250	
10	3 P	1472	70	()		1390	35	1278 *	105	1258	110	
11	2P	1480 t	140	()		1385	70	1311	160 {	1286	310	
19	40	1476 +	220	1448 +	50	1308	70		(1247	125	
13	4PO(3Me)	()	220	1445 *	90	1393	110	1300 *	80	1292	320	
14	3PO	1473 ′	115	(—)		1397	65			1308	210	
15	2 PO	1475 ‡	125	(—)		1398	65	_	{	$1313 \\ 1274$	310 190	
		6			7		8			9		
		CH ₃		CH				C	C ₂ H ₅			
		rock of-pla	out- ane?	rock in-plai		e?	sym stretch		:	CC stretch		
No.	Ring	cm1	εA	cm.~	1	ε _A	cm1	εA	cm	-1	εA	
1	Ph	1114	55	1089	*	25	1045	135	919		30	
2	$C_6H_4 \cdot NH_2 - m$	1112	50	1090		20	1043	110	972		30	
3	C ₆ H ₄ ·OEt-m	1112	120	1086		40	1044	175	984		25	
4	C ₆ H₄•Me- <i>m</i>	1113	50	1090		20	1045	85 {	919		30 70	
5	C ₆ H ₄ •NO ₂ - <i>m</i>	1111	60	1094	†	75	1042	145	956		40	
6	$C_6H_4\cdot NH_2 p$	1114	60	1087		25	1046	115	920		30	
7	C ₆ H ₄ ·Me- <i>p</i>	1115	、 60	1090	*	20	1045	95 175	918		50	
ð	$C_6 \Pi_4 \cdot N O_2 \cdot p$	(-)	1088		30	1039	190	920		50 50	
9	4 P	1110	45	1088		25 {	1010 *	35	022		00	
10	3 P	1112	60	10 9 0	*	25 {	$1050 \\ 1032$	90 50	915		20	
11	2P	1115	30	1091		35 {	1045 †	180	921		45	
12	4PO	1114	70	1088		20	1039	230	925	1	105	
13	4PO(3Me)	1108	55	1086		30	1039	240	916		150	
14	3PO`	1113	60	1092		40	1043	135	915		25	
15	2 PO	1120 †	195	1090		35	1034	135 {	928		50 25	
		,							- 909		J D	

For symbols, etc., see footnotes to Table 1. Unexplained bands ($\epsilon_A \ge 15$) were shown for compound No. 9 at 1700 (30) and 828 • (40) cm.⁻¹; for No. 12 at 1555 (15) cm.⁻¹; and for No. 15 at 3370 (135) cm.⁻¹.

Å band for No. 11 at 1266 \ddagger (140) cm.⁻¹ is probably a nuclear band (cf. Katritzky and Hands, J., 1958, 2202).

 $[1370 \pm 2 \text{ cm.}^{-1} (100 \pm 10)]$ and CH_3 asymmetric $[1446 \pm 1 (30 \pm 5)]$ and symmetric bending modes $[1391\cdot5 \pm 2 \text{ cm.}^{-1} (30 \pm 5)]$.¹ The CH_2 modes should, because of proximity, show the biggest difference between ester and ether; the wagging mode apparently disappears,* and the scissor mode is shifted and enhanced in intensity. The CH_3 asymmetrical deformation mode is little altered; the symmetrical CH_3 deformation mode is somewhat intensified.

* Possibly the wagging frequency is shifted upwards and contributes to the apparent intensification of the CH_3 symmetrical bending modes.

Substituents in Aromatic Systems. Part I. [1959]

We are thus able to make a more complete assignment of the bands in this region than previous workers who found 9 absorption at 1471–1453 cm.⁻¹ (s) and 1361–1328 cm.⁻¹ (s) for methoxy-compounds (assigned respectively to the asymmetrical and symmetrical CH bending modes) and at 1473-1462 and 1389-1387 cm.⁻¹ (intensity not indicated) for the ethoxy-compounds (assigned to the asymmetrical and symmetrical methyl and methylene modes 9). It has also been reported by Jones *et al.*⁵ that methoxyl and methyleneoxy (·O·CH₂·) groups do not show characteristic CH deformation frequencies in the 1500—

1350 cm.⁻¹ region. The 1350—1240 cm.⁻¹ Region.—For ROR', when R = R' the OR and the OR' stretching modes are coupled, forming an asymmetric and a symmetric mode. If R and R' are

> appreciably different (e.g., aromatic and aliphatic), coupling is less important, and one mode is principally the OR and the other the OR' stretching frequency. The strong band for the methyl and ethyl ethers (Tables 1 and 2, col. 5) at 1313 to < 1240 cm⁻¹ is principally the ring-oxygen stretching frequency because this has some double-bond character and will therefore absorb at higher frequencies than the alkyl-oxygen mode; the regularities discussed below confirm this assignment. Absorption is similar for corresponding methoxyand ethoxy-compounds; for the latter the position is -2 to +7 [3 ± 3] cm.⁻¹

lower than, and the intensity is 0.6 to 1.3 [0.9 + 0.2] times greater than, that of the former. The following discussion includes both the methoxy- and ethoxy-compounds.

The frequency should be higher the greater the electron-withdrawing power of the ring, for this increases mesomerism of type (I) and thus the double-bond character of the oxygen-ring linkage. As expected, all the heterocyclic ethers absorb at higher frequencies than anisole and phenetole and in the order (series 1) of the electron-withdrawing ability of

$$\begin{array}{ccc} {\rm Ph} < {\rm 3P} < {\rm 4P} \sim {\rm 2P} < {\rm 4PO} < {\rm 3PO} \sim {\rm 2PO} \sim {\rm 4PBCl}_3 \dots {\rm Series} \ 1 \ * \\ 0 & 19 & {\rm 44-48} & {\rm 48-52} & {\rm 64-74} & {\rm cm}.^{-1} \end{array}$$

the ring in various positions, an order which is in agreement with chemical ¹¹ and dipolemoment ¹² evidence, with the positions of the ring-nitrogen stretching band for amines,¹³ and with the intensity variation of ring nuclear bands.³ The effect of *para*-substituents in the benzene ring is also as expected (series 2). However, meta-substituted benzenes are

$$NH_2$$
, OMe, OH $< Me < H < CH:CHX$, CiCX $< NO_2...$ Series 2
? (obscured by CHCl₂) -2 0 $3-8$ $18-20$ cm.⁻¹

anomalous; the position is higher than expected (series 3) for compounds with electron-

$$\begin{array}{ll} H < \mathrm{NO}_2 < \mathrm{Me} < \mathrm{OMe}, \dagger \ \mathrm{OEt}, \dagger \ \mathrm{OH}, \ \mathrm{NH}_2. \ldots \mathrm{Series} \ \mathbf{3} \\ 0 & 2 - 3 & 14 - 16 & 28 - 44 \ \mathrm{cm}.^{-1} \end{array}$$

donor substituents, possibly because of coupling with a nuclear band.

The intensity is (70-150) [(115 ± 30)] for the anisoles and phenetoles with a metasubstituent other than a nitro-group; in these phenetoles and in all the other compounds, the intensity is (110-490) [(260 ± 65)]. Frequently a subsidiary to the main aryloxygen bond-stretching band is shown at somewhat higher frequencies (Tables 1 and 2, col. 4).

Absorption at 1271-1242 cm.^{-1,9} at 1270-1230 and up to 1300 cm.⁻¹ for metasubstituted compounds,⁶ and at 1270-1150 cm.⁻¹ had previously⁷ been assigned to the aryl-oxygen stretching mode.

† The band is split in these compounds; average intensities and frequencies are taken.

- Katritzky, Quart. Rev., 1956, 10, 395.
 Katritzky, Randall, and Sutton, J., 1957, 1769; Bax, Katritzky, and Sutton, J., 1958, 1254.
 Katritzky and R. A. Jones, following paper.

^{*} In this and the following paper, substituted pyridine, pyridine l-oxide, and pyridine-boron trichloride nuclei are represented by P, PO, and PBCl₃, respectively, together with a numeral to indicate the position of the substituent.

2066 Infrared Absorption of Substituents in Aromatic Systems. Part I.

The 1200—1050 cm.⁻¹ Region (Table 2, cols. 6 and 7).—The ethoxy-compounds show bands at 1115—1108 cm.⁻¹ (30—70) [1113 \pm 2 cm.⁻¹ (55 \pm 10)] (except in No. 15 where the band is displaced to 1120 cm.⁻¹ by overlap) and at 1092—1086 cm.⁻¹ (20—40) [1089 \pm 2 cm.⁻¹ (25 \pm 5)] which are probably due to a mode of the ethyl group since no corresponding absorption was found for the methoxy-compounds. Possible assignments are methyl in- and out-of-plane rocking modes.¹⁴ Ethyl esters show a band corresponding to the second but not to the first mode.¹ Briggs *et al.*⁹ reported absorption bands at 1122—1117 and 1156 cm.⁻¹ for ethoxy-compounds and at 1192—1175 and 1148—1079 cm.⁻¹ for methoxy-compounds; in the last three cases this was probably due to aromatic CH in-plane vibrations which are sometimes greatly intensified by alkoxyl groups.^{26,15}

The 1050—1000 cm.⁻¹ Region (Table 1, col. 6; Table 2, col. 8).—Bands shown for the ethoxy-compounds at 1050—1034 [1043 \pm 4] cm.⁻¹ and by the methoxy-compounds at 1048—1013 [1034 \pm 8] cm.⁻¹ are assigned to a mode involving mainly alkyl-oxygen bond stretching, in agreement with Briggs *et al.*⁹ who found these bands at 1048—1024 and 1042—1000 cm.⁻¹ for ethoxy- and methoxy-compounds, respectively, and others ^{6,7} who quote ranges of 1070—1000 cm.⁻¹ and 1120—1030 cm.⁻¹. The band is split for *m*-dimethoxybenzene, and average values of position and intensity have been used in the following treatment; when splitting occurs for other compounds, the position and intensity of the strongest component have been taken.

Absorption for corresponding pairs is 0-12 $[7 \pm 4]$ cm.⁻¹ higher and 0.8-1.3 $[1.0 \pm 0.15]$ times as intense for the ethoxy- as for the methoxy-compounds. Intensities

 $3P < 4PBCl_3 < 3PO \sim Ph < 4P < 4PO, 4PO(3Me) \dots$ Series 4 90 100 115—135 130—135 190—205 230—285

are (80-170) [(115 \pm 20)] for all the benzenoid compounds except those with a *p*-nitrosubstituent, for which they are (175-190). The relative intensities for the heterocyclic compounds, anisole, and phenetole (series 4) do not bear any obvious relation to the nature of the ring.

The 1000—900 cm.⁻¹ Region (Table 2, col. 9).—A band occurs at 928—915 [920 \pm 4] cm.⁻¹ for all the ethoxy-compounds except *m*-amino-, *m*-ethoxy-, and *m*-nitro-phenetole, for which the position is 984—956 cm.⁻¹. The intensity is (20—70) [(40 \pm 15)] except for the 4PO and the 4PO(3Me) compound, where it is (105—150). This band is tentatively assigned to the CC stretching mode of the ethyl group.¹⁴

Nuclear Bands.—The compounds also show bands due to vibrations of the nuclei; these have been published ² for 2-, 3-, and 4-monosubstituted pyridines, for 2-, 3-, and 4-monosubstituted pyridine 1-oxides, and for monosubstituted benzenes. Very few bands ($\varepsilon_{A} \ge 15$) were found which could not be assigned to the alkoxyl group, nucleus, or other substituent; the exceptions are shown in footnotes to Tables 1 and 2.

Experimental.—References to the methods for the preparation of the compounds are given elsewhere.¹⁻³ The spectra were measured on the Oxford Perkin-Elmer 21 spectrophotometer with a sodium chloride prism, slit programme 4, and the settings previously given.¹ $\varepsilon_{\mathbf{A}}$ values were calculated as in ref. 2(b).

We thank Dr. N. Sheppard for reading this and the following paper in manuscript; part of this work was carried out during the tenure (by A. R. K.) of an I.C.I. Fellowship.

THE DYSON PERRINS LABORATORY, OXFORD.

THE UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE. [Received, December 11th, 1958.]

14 Cf. Sheppard and Simpson Quart. Rev., 1953, 7, 19.